

MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

LECTURE 3: ELEMENTARY COUNTING

Product of Sets and The Multiplication Principle. For any set S , we let $|S|$ denote the cardinality or size of S . When S is finite, $|S|$ is the number of elements that are contained in S , and we call S an $|S|$ -element set or an $|S|$ -set. If we know the sizes of two finite sets A and B , then we can easily find the size of their Cartesian product

$$A \times B := \{(a, b) \mid a \in A \text{ and } b \in B\}.$$

Indeed, suppose that A is an m -set and B is an n -set for some $m, n \in \mathbb{N}_0$, and write $A = \{a_1, \dots, a_m\}$ and $B = \{b_1, \dots, b_n\}$. After placing the elements of $A \times B$ in an $m \times n$ table letting (a_i, b_j) be the pair occupying the i -th row and j -th column, we see that $|A \times B| = m \times n = |A| \cdot |B|$. We can now use induction to argue that if A_1, \dots, A_k are finite sets, then

$$(0.1) \quad |A_1 \times \dots \times A_k| = |A_1| \cdots |A_k|,$$

where $A_1 \times \dots \times A_k$ consists of all (ordered) k -tuples (a_1, \dots, a_k) with $a_i \in A_i$ (for every $i \in [k]$). We call $A_1 \times \dots \times A_k$ the (Cartesian) product of the sets A_1, \dots, A_k . We can rephrase the identity (0.1) in the following less formal way.

Multiplication Principle. In a given sequence of k activities, suppose we can do (independently) the first one in n_1 ways, the second one in n_2 ways, and so on. Then we can do the full sequence of activities in a total of $n_1 \cdots n_k$ different ways.

Example 1. Suppose that we have an alphabet consisting of n symbols. For each $k \in \mathbb{N}_0$, how many k -characters passwords can we create over this alphabet? Well, for every $i \in [k]$, we can think of choosing the i -th symbol as our i -th activity. Since there is a total of k activities, and we can do each of them in n different ways, it follows from the multiplication principle that we can form a total of n^k passwords over the given alphabet. Now we can add the restriction that passwords cannot contain repeated symbols. In this case, we can choose the first symbol in n different ways, the second one in $n - 1$ different ways, and so on. Therefore we can form $n(n - 1) \cdots (n - k + 1)$ k -character passwords that do not repeat any symbol.

Notation: It is common to denote $n(n - 1) \cdots (n - k + 1)$ by $(n)_k$.

Permutations and Bijections. A *permutation* of a finite number of objects is a specific sequential arrangement of such objects.

Example 2. Suppose that we want to organize the 35 students taking 18.211 in a line. This can be done as in the second part of Example 1. For every $i \in [35]$, and starting from the first position, we can fill the i -th position with one of the $35 - i + 1$ students who are not in line yet. Thus, we can organize all the students in a line in a total of $35! = 1 \cdot 2 \cdot 3 \cdots 35$ different ways.

Following the method in the previous example, we see that given n objects (often labeled by $1, 2, \dots, n$), there is a total of $n!$ permutations of such objects. The notion of a permutation is crucial in combinatorics, and so we highlight the previous statement as a proposition.

Proposition 3. *For any $n \in \mathbb{N}$, the number of permutations of n given objects is $n!$.*

By convenience, we will always assume that $0! = 1$. Each permutation of an n -set S can be interpreted as a bijective function $\pi: [n] \rightarrow [n]$ as follows.

Example 4. Let S be a set consisting of n elements, namely, $S = \{s_1, \dots, s_n\}$. Let π be a permutation of the elements of S , that is, a linear arrangement of them. Then we can think of π as a function $\pi: [n] \rightarrow [n]$, where $\pi(i)$ denotes the position of s_i in the given linear arrangement. As distinct elements in the arrangement occupy distinct positions, the function π is injective, and because every position is occupied by an element, π is surjective. Thus, $\pi: [n] \rightarrow [n]$ is bijective. Conversely, any bijective function $\pi: [n] \rightarrow [n]$ naturally determines a permutation of the elements of S , where the element s_i occupies the position $\pi(i)$ of the linear arrangement.

Hence we can think of permutations of n given objects as bijections on the set $[n]$, and we will do so often.

Theorem 5.¹ *If $f: A \rightarrow B$ is a bijective function between finite sets, then $|A| = |B|$.*

Proof. Since f is injective, $|A| = |f(A)| \leq |B|$. Now set $n := |B|$, and then write $B = \{b_1, \dots, b_n\}$. Since f is surjective, for each $i \in [n]$ we can choose $a_i \in A$ with $f(a_i) = b_i$. Therefore $|A| \geq |\{a_1, \dots, a_n\}| = |B|$. As $|A| \leq |B|$ and $|B| \leq |A|$, we conclude that $|A| = |B|$. \square

For a set S , the set 2^S consisting of all subsets of S is called the *power set* of S . As an application of Theorem 5, let us show that the size of 2^S is $2^{|S|}$ when S is finite.

Proposition 6. *Let S be a finite set. Then $|2^S| = 2^{|S|}$.*

¹This theorem does not require that the sets A and B are finite, but this will suffice for the moment.

Proof. Set $n := |S|$. If $n = 0$, then the only subset of S is the empty set, and so $|2^S| = 1 = 2^{|S|}$. Assume now that $n \geq 1$, and label the elements of S by $1, 2, \dots, n$. Let B be the set consisting of all length- n binary strings (i.e., sequences of n elements whose terms are either 0's or 1's). For each X in 2^S , let $b(X)$ denote the length- n binary string having a 1 in the i -th position if and only if $i \in X$. One can easily see that $b: 2^S \rightarrow B$ is a bijection. On the other hand, it follows from the multiplication principle that $|B| = 2^n$. Hence Theorem 5 allows us to conclude that $|2^S| = |B| = 2^{|S|}$. \square

Binomial Coefficients. Now we are interested in counting the number of subsets of a fixed size of a given set. For a set S and $k \in \mathbb{N}_0$, we let $\binom{S}{k}$ denote the set consisting of all the subsets X of S with $|X| = k$. The number $\binom{n}{k} := |\binom{[n]}{k}|$ plays a fundamental role in combinatorics and is called a *binomial coefficient*. Observe that when $k \notin \llbracket 0, n \rrbracket$, the set $[n]$ does not have any k -subset and so $\binom{n}{k} = 0$.

Proposition 7. $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ for all $n, k \in \mathbb{N}_0$.

Proof. Let $N(n, k)$ be the total number of ways to take k elements of the set $[n]$ and linearly order them. We can choose k elements of $[n]$ in $\binom{n}{k}$ times, and we order the chosen elements in $k!$ ways. Therefore $N(n, k) = \binom{n}{k}k!$. On the other hand, we can choose the first element from $[n]$ in n different ways and make it the first element in our arrangement, then we can choose the second element of our arrangement in $n - 1$ ways, and so on until we get to the k -th (and last) position of our arrangement, which can be chosen in $n - k + 1$ different ways. So by the multiplication principle, we can create the desired arrangement in $N(n, k) = n(n - 1) \cdots (n - k + 1) = \frac{n!}{(n-k)!}$ different ways. Hence $\binom{n}{k} = \frac{N(n, k)}{k!} = \frac{n!}{k!(n-k)!}$. \square

The following proposition is often useful.

Proposition 8. $\binom{n}{k} = \binom{n}{n-k}$ for all $n, k \in \mathbb{N}_0$.

Proof. Define $f: \binom{[n]}{k} \rightarrow \binom{[n]}{n-k}$ by letting $f(S)$ be the complement of S in $[n]$, that is, $f(S) = [n] \setminus S$. As f is clearly a bijection, the equality $\binom{n}{k} = \binom{n}{n-k}$ must hold. \square

Multisets. In this last section we discuss the notion of a multiset, which is, roughly speaking, a set with repetitions allowed. More formally, for a set S , a *multiset* on S is a pair (S, f) , where $f: S \rightarrow \mathbb{N}_0$. The number $f(s)$, called the *multiplicity* of s , specifies how many times s is repeated in the given multiset. When S is finite, the *cardinality* or *size* of (S, f) is defined to be $k := \sum_{s \in S} f(s)$ and, in this case, (S, f) is said to be a k -*multiset* on S . If $S = \{s_1, \dots, s_n\}$, we often write $\{s_1^{f(s_1)}, \dots, s_n^{f(s_n)}\}$ instead of (S, f) . For instance, $\{1, 2, 2, 4, 4\} = \{1, 2^2, 3^0, 4^2\}$ is a 5-multiset on the set $[4]$. We let $\binom{S}{k}$ denote the set of all k -multisets on S , and we let $\binom{[n]}{k}$ denote the size of $\binom{S}{k}$.

Theorem 9. $\binom{\binom{n}{k}}{k} = \binom{n+k-1}{k}$ for all $n, k \in \mathbb{N}_0$.

Proof. For a k -multiset $A = \{a_1, \dots, a_k\}$ on $[n]$, where we assume that $a_1 \leq \dots \leq a_k$, set $f(A) = \{a_1, a_2 + 1, \dots, a_k + k - 1\}$, and note that $f(A)$ is a k -subset of $[n+k-1]$. So we can define $f: \binom{[n]}{k} \rightarrow \binom{[n+k-1]}{k}$ by the assignment $f: A \mapsto f(A)$. It is clear that the function f is injective. On the other hand, for a subset $B := \{b_1, \dots, b_k\}$ of $[n+k-1]$ with $b_1 < \dots < b_k$, we see that $f(B) = B$, where B is the k -multiset $\{b_1, b_2 - 1, \dots, b_k - k + 1\}$ on $[n]$. Thus, f is also surjective and so a bijection. Hence $\binom{\binom{n}{k}}{k} = \left| \binom{[n]}{k} \right| = \left| \binom{[n+k-1]}{k} \right| = \binom{n+k-1}{k}$. \square

Let us look at some applications of Theorem 9.

Example 10. Suppose we want to place k identical balls into n different (distinguishable) boxes. After labeling the boxes by b_1, b_2, \dots, b_n , each placement can be identified with a k -multiset on $[n]$ as follows: the number of balls in box b_i specify the multiplicity of i in the k -multiset. By Theorem 9, the total number of configurations is $\binom{\binom{n}{k}}{k}$.

Example 11. How many solutions has the equation $x_1 + \dots + x_{18} = 211$ in \mathbb{N}_0^{18} ? Well, observe that each solution (s_1, \dots, s_{18}) can be identified with a 211-multiset M on $[18]$: the coordinate s_i specifies the multiplicity of i in M . Hence it follows from Theorem 9 that the number of solutions of the given equation is $\binom{228}{17}$.

PRACTICE EXERCISES

Exercise 1. For a function $f: A \rightarrow B$, prove the following statements.

- (1) If there is a function $g: B \rightarrow A$ with $f \circ g = g \circ f$, then f (and so g) is a bijection, in which case g is called the inverse of f .
- (2) If $|A| = |B|$, then f is injective if and only if f is surjective, in which case, it is a bijection.

Exercise 2. How many 9-tuples in \mathbb{N}^9 satisfy the inequality $x_1 + \dots + x_9 < 30$?

Exercise 3. [1, Exercise 3.7] How many five-digit positive integers contain the digit 9 and are divisible by 3?

REFERENCES

[1] M. Bóna: *A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory* (Fourth Edition), World Scientific, New Jersey, 2017.