MIT 18.211: COMBINATORIAL ANALYSIS

FELIX GOTTI

LECTURE 3: ELEMENTARY COUNTING

Product of Sets and The Multiplication Principle. For any set S, we let |S]
denote the cardinality or size of S. When S is finite, |S| is the number of elements that
are contained in S, and we call S an |S|-element set or an |S|-set. If we know the sizes
of two finite sets A and B, then we can easily find the size of their Cartesian product

Ax B:={(a,b)|a€ Aandbe B}.

Indeed, suppose that A is an m-set and B is an n-set for some m,n € Ny, and write
A ={ay,...,ay} and B = {by,...,b,}. After placing the elements of A X B in an
m x n table letting (a;, b;) be the pair occupying the i-th row and j-th column, we see
that |[Ax B| = mxn = |A|-|B|. We can now use induction to argue that if A, ..., Ay
are finite sets, then

(0.1) | Ay X oo X Agl = |Ay] - - | Akl

where Ay X -+ x Ay consists of all (ordered) k-tuples (ay,...,ax) with a; € A; (for
every i € [k]). We call A} x --- x Ay the (Cartesian) product of the sets Ay, ..., Ag.
We can rephrase the identity (0.1) in the following less formal way.

Multiplication Principle. In a given sequence of k activities, suppose we can do
(independently) the first one in n; ways, the second one in ny ways, and so on. Then
we can do the full sequence of activities in a total of n; - - - ny different ways.

Example 1. Suppose that we have an alphabet consisting of n symbols. For each
k € Np, how many k-characters passwords can we create over this alphabet? Well, for
every ¢ € [k], we can think of choosing the i-th symbol as our i-th activity. Since there
is a total of k activities, and we can do each of them in n different ways, it follows from
the multiplication principle that we can form a total of n* passwords over the given
alphabet. Now we can add the restriction that passwords cannot contain repeated
symbols. In this case, we can choose the first symbol in n different ways, the second
one in n — 1 different ways, and so on. Therefore we can form n(n —1)---(n —k +1)
k-character passwords that do not repeat any symbol.

Notation: It is common to denote n(n —1)---(n —k + 1) by (n)y.
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Permutations and Bijections. A permutation of a finite number of objects is a
specific sequential arrangement of such objects.

Example 2. Suppose that we want to organize the 35 students taking 18.211 in a line.
This can be done as in the second part of Example 1. For every i € [35], and starting
from the first position, we can fill the i-th position with one of the 35 — i + 1 students
who are not in line yet. Thus, we can organize all the students in a line in a total of
35! =1-2-3---35 different ways.

Following the method in the previous example, we see that given n objects (often
labeled by 1,2, ..., n), there is a total of n! permutations of such objects. The notion of
a permutation is crucial in combinatorics, and so we highlight the previous statement
as a proposition.

Proposition 3. For any n € N, the number of permutations of n given objects is n!.

By convenience, we will always assume that 0! = 1. Each permutation of an n-set S
can be interpreted as a bijective function 7: [n] — [n] as follows.

Example 4. Let S be a set consisting of n elements, namely, S = {s1,...,$,}. Let 7
be a permutation of the elements of S, that is, a linear arrangement of them. Then
we can think of 7 as a function 7: [n] — [n], where 7 (i) denotes the position of s; in
the given linear arrangement. As distinct elements in the arrangement occupy distinct
positions, the function 7 is injective, and because every position is occupied by an
element, 7 is surjective. Thus, 7: [n] — [n] is bijective. Conversely, any bijective
function 7: [n] — [n] naturally determines a permutation of the elements of S, where
the element s; occupies the position (i) of the linear arrangement.

Hence we can think of permutations of n given objects as bijections on the set [n],
and we will do so often.

Theorem 5. ' If f: A — B is a bijective function between finite sets, then |A| = |B].

Proof. Since f is injective, |A| = |f(A)| < |B|. Now set n := |B|, and then write

B = {by,...,b,}. Since f is surjective, for each ¢ € [n] we can choose a; € A with
f(a;) = b;. Therefore |A| > [{a1,...,a,}| = |B|. As |A| < |B| and |B| < |A], we
conclude that |A| = |B|. O

For a set S, the set 2° consisting of all subsets of S is called the power set of S. As
an application of Theorem 5, let us show that the size of 2° is 2!l when S is finite.

Proposition 6. Let S be a finite set. Then |25| = 219,

IThis theorem does not require that the sets A and B are finite, but this will suffice for the moment.
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Proof. Set n := |S|. If n = 0, then the only subset of S is the empty set, and so
2% = 1 = 2!%. Assume now that n > 1, and label the elements of S by 1,2,...,n.
Let B be the set consisting of all length-n binary strings (i.e., sequences of n elements
whose terms are either 0’s or 1’s). For each X in 27, let b(X) denote the length-n binary
string having a 1 in the ¢-th position if and only if ¢ € X. One can easily see that
b: 25 — Bis a bijection. On the other hand, it follows from the multiplication principle
that | B| = 2". Hence Theorem 5 allows us to conclude that 25| = |B| = 2!, O

Binomial Coefficients. Now we are interested in counting the number of subsets of
a fixed size of a given set. For a set S and k € Ny, we let (i) denote the set consisting

of all the subsets X of S with |X| = k. The number (}) := ’([Z])‘ plays a fundamental
role in combinatorics and is called a binomial coefficient. Observe that when k ¢ [0, n],

the set [n] does not have any k-subset and so () = 0.

Proposition 7. (Z) = k,(%k), for all n,k € Ny.

Proof. Let N(n,k) be the total number of ways to take k elements of the set [n] and
linearly order them. We can choose k elements of [n] in (Z) times, and we order the
chosen elements in k! ways. Therefore N(n,k) = (})k!. On the other hand, we can
choose the first element from [n]| in n different ways and make it the first element in
our arrangement, then we can choose the second element of our arrangement in n — 1
ways, and so on until we get to the k-th (and last) position of our arrangement, which
can be chosen in n — k + 1 different ways. So by the multiplication principle, we can
create the desired arrangement in N(n,k) =n(n—1)---(n—k+1) = #'k), different

k) = TR T Rk O

ways. Hence (

The following proposition is often useful.
Proposition 8. (Z) = (nfk) for all n, k € Ny.

Proof. Define f: ([Z]) — (n[ﬁ]k) by letting f(S) be the complement of S in [n], that is,
f(S)=1n]\ S. As f is clearly a bijection, the equality (Z) = (nﬁk) must hold. O

Multisets. In this last section we discuss the notion of a multiset, which is, roughly
speaking, a set with repetitions allowed. More formally, for a set S, a multiset on S is
a pair (S, f), where f: S — Ny. The number f(s), called the multiplicity of s, specifies
how many times s is repeated in the given multiset. When S is finite, the cardinality
or size of (S, f) is defined to be k := ) __ f(s) and, in this case, (S, f) is said to be

a k-multiset on S. If S = {sq,...,s,}, we often write {s7¢" ... s/} instead of
(S, f). For instance, {1,2,2,4,4} = {1,22,3° 4%} is a 5-multiset on the set [4]. We let
((i)) denote the set of all k-multisets on S, and we let ((Z)) denote the size of (([Z’]))
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Theorem 9. ((Z)) = ("*271) for all n, k € Ny.

Proof. For a k-multiset A = {ay,...,ax} on [n], where we assume that a; < --- < ay,
set f(A) ={ai,as+1,...,a,+k — 1}, and note that f(A) is a k-subset of [n+ &k — 1].
So we can define f: (([z})) — ([”le*l]) by the assignment f: A — f(A). It is clear
that the function f is injective. On the other hand, for a subset B := {by,..., by}
of [n + k — 1] with by < .-+ < by, we see that f(A) = B, where A is the k-multiset
{b1,bo — 1,...,by — k + 1} on [n]. Thus, f is also surjective and so a bijection. Hence

() = HEDT = 1D = (5, =

Let us look at some applications of Theorem 9.

Example 10. Suppose we want to place k identical balls into n different (distinguish-
able) boxes. After labeling the boxes by by, by, . .., b,, each placement can be identified
with a k-multiset on [n] as follows: the number of balls in box b; specify the multiplicity
of 7 in the k-multiset. By Theorem 9, the total number of configurations is ((Z))

Example 11. How many solutions has the equation xj +- - -+ x5 = 211 in N}8? Well,
observe that each solution (si, ..., s1s) can be identified with a 211-multiset M on [18]:
the coordinate s; specifies the multiplicity of 7 in M. Hence it follows from Theorem 9

that the number of solutions of the given equation is (21278).

PRACTICE EXERCISES

Exercise 1. For a function f: A — B, prove the following statements.
(1) If there is a function g: B — A with fog = go f, then f (and so g) is a
bijection, in which case g is called the inverse of f.
(2) If |A| = |B|, then f is injective if and only if f is surjective, in which case, it
s a bijection.

Exercise 2. How many 9-tuples in N° satisfy the inequality 1 + - -+ z9 < 307

Exercise 3. [1, Exercise 3.7] How many five-digit positive integers contain the digit 9
and are divisible by 3¢

REFERENCES

[1] M. Béna: A Walk Through Combinatorics: An Introduction to Enumeration and Graph Theory
(Fourth Edition), World Scientific, New Jersey, 2017.

DEPARTMENT OF MATHEMATICS, MIT, CAMBRIDGE, MA 02139
Email address: fgottilmit.edu



	Lecture 3: Elementary Counting
	Product of Sets and The Multiplication Principle
	Permutations and Bijections
	Binomial Coefficients
	Multisets

	Practice Exercises
	References

