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FELIX GOTTI

Lecture 3: Elementary Counting

Product of Sets and The Multiplication Principle. For any set S, we let |S|
denote the cardinality or size of S. When S is finite, |S| is the number of elements that
are contained in S, and we call S an |S|-element set or an |S|-set. If we know the sizes
of two finite sets A and B, then we can easily find the size of their Cartesian product

A×B :=
{
(a, b) | a ∈ A and b ∈ B

}
.

Indeed, suppose that A is an m-set and B is an n-set for some m,n ∈ N0, and write
A = {a1, . . . , am} and B = {b1, . . . , bn}. After placing the elements of A × B in an
m× n table letting (ai, bj) be the pair occupying the i-th row and j-th column, we see
that |A×B| = m×n = |A| · |B|. We can now use induction to argue that if A1, . . . , Ak

are finite sets, then

(0.1) |A1 × · · · × Ak| = |A1| · · · |Ak|,
where A1 × · · · × Ak consists of all (ordered) k-tuples (a1, . . . , ak) with ai ∈ Ai (for
every i ∈ [k]). We call A1 × · · · × Ak the (Cartesian) product of the sets A1, . . . , Ak.
We can rephrase the identity (0.1) in the following less formal way.

Multiplication Principle. In a given sequence of k activities, suppose we can do
(independently) the first one in n1 ways, the second one in n2 ways, and so on. Then
we can do the full sequence of activities in a total of n1 · · ·nk different ways.

Example 1. Suppose that we have an alphabet consisting of n symbols. For each
k ∈ N0, how many k-characters passwords can we create over this alphabet? Well, for
every i ∈ [k], we can think of choosing the i-th symbol as our i-th activity. Since there
is a total of k activities, and we can do each of them in n different ways, it follows from
the multiplication principle that we can form a total of nk passwords over the given
alphabet. Now we can add the restriction that passwords cannot contain repeated
symbols. In this case, we can choose the first symbol in n different ways, the second
one in n− 1 different ways, and so on. Therefore we can form n(n− 1) · · · (n− k + 1)
k-character passwords that do not repeat any symbol.

Notation: It is common to denote n(n− 1) · · · (n− k + 1) by (n)k.
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Permutations and Bijections. A permutation of a finite number of objects is a
specific sequential arrangement of such objects.

Example 2. Suppose that we want to organize the 35 students taking 18.211 in a line.
This can be done as in the second part of Example 1. For every i ∈ [35], and starting
from the first position, we can fill the i-th position with one of the 35− i+ 1 students
who are not in line yet. Thus, we can organize all the students in a line in a total of
35! = 1 · 2 · 3 · · · 35 different ways.

Following the method in the previous example, we see that given n objects (often
labeled by 1, 2, . . . , n), there is a total of n! permutations of such objects. The notion of
a permutation is crucial in combinatorics, and so we highlight the previous statement
as a proposition.

Proposition 3. For any n ∈ N, the number of permutations of n given objects is n!.

By convenience, we will always assume that 0! = 1. Each permutation of an n-set S
can be interpreted as a bijective function π : [n] → [n] as follows.

Example 4. Let S be a set consisting of n elements, namely, S = {s1, . . . , sn}. Let π
be a permutation of the elements of S, that is, a linear arrangement of them. Then
we can think of π as a function π : [n] → [n], where π(i) denotes the position of si in
the given linear arrangement. As distinct elements in the arrangement occupy distinct
positions, the function π is injective, and because every position is occupied by an
element, π is surjective. Thus, π : [n] → [n] is bijective. Conversely, any bijective
function π : [n] → [n] naturally determines a permutation of the elements of S, where
the element si occupies the position π(i) of the linear arrangement.

Hence we can think of permutations of n given objects as bijections on the set [n],
and we will do so often.

Theorem 5. 1 If f : A → B is a bijective function between finite sets, then |A| = |B|.

Proof. Since f is injective, |A| = |f(A)| ≤ |B|. Now set n := |B|, and then write
B = {b1, . . . , bn}. Since f is surjective, for each i ∈ [n] we can choose ai ∈ A with
f(ai) = bi. Therefore |A| ≥ |{a1, . . . , an}| = |B|. As |A| ≤ |B| and |B| ≤ |A|, we
conclude that |A| = |B|. □

For a set S, the set 2S consisting of all subsets of S is called the power set of S. As
an application of Theorem 5, let us show that the size of 2S is 2|S| when S is finite.

Proposition 6. Let S be a finite set. Then |2S| = 2|S|.

1This theorem does not require that the sets A and B are finite, but this will suffice for the moment.
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Proof. Set n := |S|. If n = 0, then the only subset of S is the empty set, and so
|2S| = 1 = 2|S|. Assume now that n ≥ 1, and label the elements of S by 1, 2, . . . , n.
Let B be the set consisting of all length-n binary strings (i.e., sequences of n elements
whose terms are either 0’s or 1’s). For eachX in 2S, let b(X) denote the length-n binary
string having a 1 in the i-th position if and only if i ∈ X. One can easily see that
b : 2S → B is a bijection. On the other hand, it follows from the multiplication principle
that |B| = 2n. Hence Theorem 5 allows us to conclude that |2S| = |B| = 2|S|. □

Binomial Coefficients. Now we are interested in counting the number of subsets of
a fixed size of a given set. For a set S and k ∈ N0, we let

(
S
k

)
denote the set consisting

of all the subsets X of S with |X| = k. The number
(
n
k

)
:=

∣∣([n]
k

)∣∣ plays a fundamental
role in combinatorics and is called a binomial coefficient. Observe that when k /∈ J0, nK,
the set [n] does not have any k-subset and so

(
n
k

)
= 0.

Proposition 7.
(
n
k

)
= n!

k!(n−k)!
for all n, k ∈ N0.

Proof. Let N(n, k) be the total number of ways to take k elements of the set [n] and
linearly order them. We can choose k elements of [n] in

(
n
k

)
times, and we order the

chosen elements in k! ways. Therefore N(n, k) =
(
n
k

)
k!. On the other hand, we can

choose the first element from [n] in n different ways and make it the first element in
our arrangement, then we can choose the second element of our arrangement in n− 1
ways, and so on until we get to the k-th (and last) position of our arrangement, which
can be chosen in n − k + 1 different ways. So by the multiplication principle, we can
create the desired arrangement in N(n, k) = n(n− 1) · · · (n− k + 1) = n!

(n−k)!
different

ways. Hence
(
n
k

)
= N(n,k)

k!
= n!

k!(n−k)!
. □

The following proposition is often useful.

Proposition 8.
(
n
k

)
=

(
n

n−k

)
for all n, k ∈ N0.

Proof. Define f :
(
[n]
k

)
→

(
[n]
n−k

)
by letting f(S) be the complement of S in [n], that is,

f(S) = [n] \ S. As f is clearly a bijection, the equality
(
n
k

)
=

(
n

n−k

)
must hold. □

Multisets. In this last section we discuss the notion of a multiset, which is, roughly
speaking, a set with repetitions allowed. More formally, for a set S, a multiset on S is
a pair (S, f), where f : S → N0. The number f(s), called the multiplicity of s, specifies
how many times s is repeated in the given multiset. When S is finite, the cardinality
or size of (S, f) is defined to be k :=

∑
s∈S f(s) and, in this case, (S, f) is said to be

a k-multiset on S. If S = {s1, . . . , sn}, we often write {sf(s1)1 , . . . , s
f(sn)
n } instead of

(S, f). For instance, {1, 2, 2, 4, 4} = {1, 22, 30, 42} is a 5-multiset on the set [4]. We let((
S
k

))
denote the set of all k-multisets on S, and we let

((
n
k

))
denote the size of

((
[n]
k

))
.
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Theorem 9.
((

n
k

))
=

(
n+k−1

k

)
for all n, k ∈ N0.

Proof. For a k-multiset A = {a1, . . . , ak} on [n], where we assume that a1 ≤ · · · ≤ ak,
set f(A) = {a1, a2 +1, . . . , ak + k− 1}, and note that f(A) is a k-subset of [n+ k− 1].

So we can define f :
((

[n]
k

))
→

(
[n+k−1]

k

)
by the assignment f : A 7→ f(A). It is clear

that the function f is injective. On the other hand, for a subset B := {b1, . . . , bk}
of [n + k − 1] with b1 < · · · < bk, we see that f(A) = B, where A is the k-multiset
{b1, b2 − 1, . . . , bk − k + 1} on [n]. Thus, f is also surjective and so a bijection. Hence((

n
k

))
=

∣∣(([n]
k

))∣∣ = ∣∣([n+k−1]
k

)∣∣ = (
n+k−1

k

)
. □

Let us look at some applications of Theorem 9.

Example 10. Suppose we want to place k identical balls into n different (distinguish-
able) boxes. After labeling the boxes by b1, b2, . . . , bn, each placement can be identified
with a k-multiset on [n] as follows: the number of balls in box bi specify the multiplicity
of i in the k-multiset. By Theorem 9, the total number of configurations is

((
n
k

))
.

Example 11. How many solutions has the equation x1+ · · ·+x18 = 211 in N18
0 ? Well,

observe that each solution (s1, . . . , s18) can be identified with a 211-multiset M on [18]:
the coordinate si specifies the multiplicity of i in M . Hence it follows from Theorem 9
that the number of solutions of the given equation is

(
228
17

)
.

Practice Exercises

Exercise 1. For a function f : A → B, prove the following statements.

(1) If there is a function g : B → A with f ◦ g = g ◦ f , then f (and so g) is a
bijection, in which case g is called the inverse of f .

(2) If |A| = |B|, then f is injective if and only if f is surjective, in which case, it
is a bijection.

Exercise 2. How many 9-tuples in N9 satisfy the inequality x1 + · · ·+ x9 < 30?

Exercise 3. [1, Exercise 3.7] How many five-digit positive integers contain the digit 9
and are divisible by 3?
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